INVESTORS
Press Releases
Precision BioSciences Announces New Study Published in Nature Communications Using Engineered ARCUS Nuclease to Target Mutant Mitochondrial DNA In Vivo
Learnings to be Presented by
The study, “Mitochondrial targeted meganuclease as a platform to eliminate mutant mtDNA in vivo” was led by
Mitochondrial disorders impair the function of mitochondria, the organelles that produce the energy needed by cells. Organs and tissues that require more energy, such as the heart, muscles and brain, are more often affected. Additionally, both mutant and wild-type mtDNA can co-exist within the mitochondria of a cell, a phenomenon called mtDNA heteroplasmy. When specific threshold levels of mutant mtDNA are reached, cell function can be compromised, and disease can manifest1. It is believed that a shift in mtDNA heteroplasmy toward wild-type may provide therapeutic benefit for patients, and not all mutant mtDNA must be eliminated to achieve improvements in symptoms; mutant mtDNA levels just need to be reduced below the disease threshold level.
“In the past, mitochondrial-targeted nucleases have been successful in shifting mtDNA heteroplasmy but have come with unwanted drawbacks, most notably large size, heterodimeric nature, inability to distinguish single base changes, or low flexibility and effectiveness,” said
Researchers involved with the study reported mitoARCUS-induced heteroplasmic shifts of up to 60% in vitro, with changes persisting for up to three weeks. When tested in a heteroplasmic mouse model, mitoARCUS delivered by AAV effectively shifted heteroplasmy towards wild-type in several of the analyzed tissues of juvenile mice, with no depletion in total mtDNA levels at 6, 12, or 24 weeks. In adult mice treated with AAV-mitoARCUS, there was no editing at any of the potential nuclear off-target sites, and liver and skeletal muscle showed robust elimination of mutant mtDNA with concomitant restoration of mitochondrial transfer RNA levels.
“This is the first time ARCUS has been used to edit outside the nuclear genome and has done so with encouraging safety and efficacy in this mouse model,” said
About ARCUS
ARCUS® is a proprietary genome editing technology discovered and developed by scientists at
About
Forward Looking Statements
This press release contains forward-looking statements within the meaning of the Private Securities Litigation Reform Act of 1995. All statements contained in this press release that do not relate to matters of historical fact should be considered forward-looking statements, including, without limitation, statements regarding the potential results, uses and advancement of our in vivo gene editing programs and ARCUS-based gene editing technology, including, without limitation, its differentiating attributes and effects in shifting mtDNA heteroplasmy and upon mtDNA diseases. In some cases, you can identify forward-looking statements by terms such as “aim,” “anticipate,” “believe,” “could,” “expect,” “should,” “plan,” “intend,” “estimate,” “target,” “mission,” “goal,” “may,” “will,” “would,” “should,” “could,” “target,” “potential,” “project,” “predict,” “contemplate,” “potential,” “suggests”, or the negative thereof and similar words and expressions.
Forward-looking statements are based on management’s current expectations, beliefs and assumptions and on information currently available to us. Such statements are subject to a number of known and unknown risks, uncertainties and assumptions, and actual results may differ materially from those expressed or implied in the forward-looking statements due to various important factors, including, but not limited to: our ability to become profitable; our ability to procure sufficient funding and requirements under our current debt instruments and effects of restrictions thereunder; risks associated with raising additional capital; our operating expenses and our ability to predict what those expenses will be; our limited operating history; the success of our programs and product candidates in which we expend our resources; our limited ability or inability to assess the safety and efficacy of our product candidates; our dependence on our ARCUS technology; the initiation, cost, timing, progress, achievement of milestones and results of research and development activities, preclinical or greenhouse studies and clinical or field trials; public perception about genome editing technology and its applications; competition in the genome editing, biopharmaceutical, biotechnology and agricultural biotechnology fields; our or our collaborators’ ability to identify, develop and commercialize product candidates; pending and potential liability lawsuits and penalties against us or our collaborators related to our technology and our product candidates; the
All forward-looking statements speak only as of the date of this press release and, except as required by applicable law, we have no obligation to update or revise any forward-looking statements contained herein, whether as a result of any new information, future events, changed circumstances or otherwise.
1 Craven, L., et al., Recent Advances in Mitochondrial Disease. Annu Rev Genomics Hum Genet, 2017. 18: p. 257-275.
View source version on businesswire.com: https://www.businesswire.com/news/home/20210601005460/en/
Investor Contact:
Chief Financial Officer
Alex.Kelly@precisionbiosciences.com
Media Contact:
Senior Director, Corporate Communications
Maurissa.Messier@precisionbiosciences.com
Source: