INVESTORS
Press Releases
Precision BioSciences Submits First Clinical Trial Applications to Initiate Phase 1 Trial for PBGENE-HBV for the Treatment of Chronic Hepatitis B
- PBGENE-HBV is the only drug modality designed to target the root cause of disease by eliminating cccDNA and inactivating integrated HBV
- Clinical trial applications submitted for the first gene editing approach for chronic hepatitis B
- Final clinical candidate safety data and plans for the Phase 1 trial to be shared in November prior to the
“The CTA submissions for PBGENE-HBV are important milestones for Precision as we pioneer this potentially curative therapy for chronic hepatitis B. These regulatory submissions are the culmination of our team’s dedication, commitment and highly productive interactions with global regulators as we develop the first clinical stage in vivo gene editing program for chronic hepatitis B virus, recognized as one of the largest global public health problems by the
Dr.
Precision is on track to submit additional regulatory applications as part of its global Phase 1 regulatory strategy for PBGENE-HBV. The next update on the PBGENE-HBV program is expected to take place before the
About Hepatitis B and PBGENE-HBV:
Hepatitis B is a leading cause of morbidity in the US and death globally, with no curative options currently available for patients. In 2019, despite the availability of approved antiviral therapies, an estimated 300 million people globally and more than 1 million people in the US were estimated to have chronic hepatitis B infection. An estimated 15% to 40% of patients with HBV infections may develop complications, such as cirrhosis, liver failure, or liver cancer (hepatocellular carcinoma), which account for the majority of HBV-related deaths.
Chronic hepatitis B infection is primarily driven by persistence of HBV cccDNA and integration of HBV DNA into the human genome in liver cells, the primary source of HBsAg in late-stage disease. Current treatments for patients with HBV infection include agents that result in long-term viral suppression as indicated by reduction of circulating HBV DNA, but these therapies do not eradicate HBV cccDNA, rarely lead to functional cure, and require lifelong administration. PBGENE-HBV is a highly specific, novel therapeutic approach to treating patients with chronic HBV infection. It is designed to directly eliminate cccDNA and inactivate integrated HBV DNA with high specificity, potentially leading to functional cures.
About
The ARCUS® platform is being used to develop in vivo gene editing therapies for sophisticated gene edits, including gene insertion (inserting DNA into gene to cause expression/add function), elimination (removing a genome e.g. viral DNA or mutant mitochondrial DNA), and excision (removing a large portion of a defective gene by delivering two ARCUS nucleases in a single AAV).
Forward-Looking Statements
This press release contains forward-looking statements within the meaning of the Private Securities Litigation Reform Act of 1995. All statements contained in this press release that do not relate to matters of historical fact should be considered forward-looking statements, including, without limitation, statements regarding the clinical development and expected safety, efficacy and benefit of our product candidates (including PBGENE-HBV) and gene editing approaches including editing efficiency; the design of PBGENE-HBV to directly eliminate cccDNA and inactivate integrated HBV DNA with high specificity, potentially leading to functional cures or providing a better chance of functional cures; the suitability of ARCUS nucleases for gene elimination, insertion and excision and differentiation from other gene editing approaches due to its small size, simplicity and distinctive cut; the expected timing of regulatory processes (including filings such as IND’s and CTA’s and studies for PBGENE-HBV and the acceptance of these filings by regulatory agencies); the translation of preclinical safety and efficacy studies and models to safety and efficacy in humans, the suitability of PBGENE-HBV for the treatment of hepatitis and the targeting of the root cause of the disease, expectations about operational initiatives, strategies, and further development of our programs; expectations about achievement of key milestones; and anticipated timing of clinical data. In some cases, you can identify forward-looking statements by terms such as “aim,” “anticipate,” “approach,” “believe,” “contemplate,” “could,” “designed,” “estimate,” “expect,” “goal,” “intend,” “look,” “may,” “mission,” “plan,” “possible,” “potential,” “predict,” “project,” “pursue,” “should,” “strive,” “target,” “will,” “would,” or the negative thereof and similar words and expressions.
Forward-looking statements are based on management’s current expectations, beliefs and assumptions and on information currently available to us. These statements are neither promises nor guarantees, and involve a number of known and unknown risks, uncertainties and assumptions, and actual results may differ materially from those expressed or implied in the forward-looking statements due to various important factors, including, but not limited to, our ability to become profitable; our ability to procure sufficient funding to advance our programs; risks associated with our capital requirements, anticipated cash runway, requirements under our current debt instruments and effects of restrictions thereunder, including our ability to raise additional capital due to market conditions and/or our market capitalization; our operating expenses and our ability to predict what those expenses will be; our limited operating history; the progression and success of our programs and product candidates in which we expend our resources; our limited ability or inability to assess the safety and efficacy of our product candidates; the risk that other genome-editing technologies may provide significant advantages over our ARCUS technology; our dependence on our ARCUS technology; the initiation, cost, timing, progress, achievement of milestones and results of research and development activities and preclinical and clinical studies, including clinical trial and investigational new drug applications; public perception about genome editing technology and its applications; competition in the genome editing, biopharmaceutical, and biotechnology fields; our or our collaborators’ or other licensees’ ability to identify, develop and commercialize product candidates; pending and potential product liability lawsuits and penalties against us or our collaborators or other licensees related to our technology and our product candidates; the
View source version on businesswire.com: https://www.businesswire.com/news/home/20240930788909/en/
Investor Contact:
Vice President, Investor Relations
Naresh.Tanna@precisionbiosciences.com
Source: