ASCO 2023
Cell Therapy Update
May 31, 2023
Forward-Looking Statements

This presentation contains forward-looking statements, as may any related presentations, within the meaning of the Private Securities Litigation Reform Act of 1995. The Company intends such forward-looking statements to be covered by the safe harbor provisions for forward-looking statements contained in Section 27A of the Securities Act and Section 21E of the Exchange Act. All statements contained in this herein and in any related presentation that do not relate to matters of historical fact should be considered forward-looking statements, including, without limitation, statements regarding research advancement, expected efficacy and benefit of our allogenic CAR T programs. In some cases, you can identify forward-looking statements by terms such as “aim,” “anticipate,” “approach,” “believe,” “contemplate,” “could,” “estimate,” “expect,” “goal,” “intend,” “look,” “may,” “mission,” “plan,” “possible,” “potential,” “predict,” “project,” “should,” “target,” “will,” “would,” or the negative thereof and similar words and expressions.

Forward-looking statements are based on management’s current expectations, beliefs and assumptions and on information currently available to us. These statements are neither promises nor guarantees, but involve number of known and unknown risks, uncertainties and assumptions, and actual results may differ materially from those expressed or implied in the forward-looking statements due to various important factors, including, but not limited to: our ability to become profitable; our ability to procure sufficient funding and requirements under our current debt instruments and effects of restrictions thereunder; risks associated with raising additional capital; our operating expenses and our ability to predict what those expenses will be; our limited operating history; the success of our programs and product candidates in which we expend our resources; our limited ability or inability to assess the safety and efficacy of our product candidates; our dependence on our ARCUS technology; the risk that other genome-editing technologies may provide significant advantages over our ARCUS technology; the initiation, cost, timing, progress, achievement of milestones and results of research and development activities, preclinical studies and clinical trials; public perception about genome editing technology and its applications; competition in the genome editing, biopharmaceutical, and biotechnology fields; our or our collaborators’ ability to identify, develop and commercialize product candidates; pending and potential liability lawsuits and penalties against us or our collaborators related to our technology and our product candidates; the U.S. and foreign regulatory landscape applicable to our and our collaborators’ development of product candidates; our ability to obtain orphan drug designation or fast track designation for our product candidates or to realize the expected benefits of these designations; our or our collaborators’ ability to obtain and maintain regulatory approval of our product candidates, and any related restrictions, limitations and/or warnings in the label of an approved product candidate; our or our collaborators’ ability to advance product candidates into, and successfully design, implement and complete, clinical or field trials; potential manufacturing problems associated with the development or commercialization of any of our product candidates; our ability to obtain an adequate supply of T cells from qualified donors; our ability to achieve our anticipated operating efficiencies at our manufacturing facility; delays or difficulties in our and our collaborators’ ability to enroll patients; changes in interim “top-line” and initial data that we announce or publish; if our product candidates do not work as intended or cause undesirable side effects; risks associated with applicable healthcare, data protection, privacy and security regulations and our compliance therewith; the rate and degree of market acceptance of any of our product candidates; the success of our existing collaboration agreements, and our ability to enter into new collaboration arrangements; our current and future relationships with and reliance on third parties including suppliers and manufacturers; our ability to obtain and maintain intellectual property protection for our technology and any of our product candidates; potential litigation relating to infringement or misappropriation of intellectual property rights; our ability to effectively manage the growth of our operations; our ability to attract, retain, and motivate key executives and personnel; market and economic conditions; effects of system failures and security breaches; effects of natural and manmade disasters, public health emergencies and other natural catastrophic events; effects of COVID-19 pandemic and variants thereof, or any pandemic, epidemic or outbreak of an infectious disease; effects of sustained inflation, supply chain disruptions and major central bank policy actions; insurance expenses and exposure to uninsured liabilities; effects of tax rules; risks related to ownership of our common stock and other important factors discussed under the caption “Risk Factors” in our Quarterly Report on Form 10-Q for the quarterly period ended March 31, 2023, as any such factors may be updated from time to time in our other filings with the SEC, which are accessible on the SEC’s website at www.sec.gov and the Investors page of our website under SEC Filings at investor.precisionbiosciences.com.

All forward-looking statements speak only as of the date of this presentation and, except as required by applicable law, we have no obligation to update or revise any forward-looking statements contained herein, whether as a result of any new information, future events, changed circumstances or otherwise.
Agenda

- Executive Summary
- Totality of Azer-cel Experience
- CAR T Relapse Setting Is Growing Area of High Unmet Need
- Potential First-In-Class: Azer-cel Clinical Update
- Potential Best-In-Class: 19B Stealth Cell Clinical Update
- Building On Precision’s Cell Therapy Foundation
- Summary

Note: Azer-cel = Precision’s lead clinical candidate, Azercabtagene zapreleucel
Executive Summary

Azer-cel: Potential First-In-Class Opportunity for CAR T Relapsed CD19+ DLBCL

Azer-cel is Precision’s Lead CAR T Program Demonstrating Efficacy and Improved Safety Across Hematologic Malignancies

• Precision has amassed a robust data package (n = 84) for Azer-cel in NHL and ALL, with clinically meaningful efficacy and an acceptable safety profile
• Azer-cel data is most compelling in the Diffuse Large B Cell Lymphoma (DLBCL) CAR T relapse setting (n=18) with 83% ORR, 61% CR rates and 55% DoR ≥6 months
• In latest cohort (n=7), Azer-cel safety profile ameliorated with 0% ≥ Grade 3 Allogeneic CAR T related AEs in fragile, relapse patient population

Next Step is Regulatory Guidance for Azer-cel Clinical Development Plan

• FDA meeting expected in June
• 500M Cells + FluCy750 established as viable Phase 2 dose for safety and efficacy
• Upcoming meeting objective to guide potential Phase 2 study; focus on trial design, size and endpoints

19B Stealth Cell: Potential Best-In-Class Opportunity for Earlier Line CAR T Naïve CD19+ DLBCL

19B Stealth Manufacturing Optimization Resulted in Phase I Efficacy and Safety on Par With Autologous CAR T in R/R NHL Setting

• Achieved 71% ORR with no Grade ≥3 Allogeneic CAR T related adverse events; Most compelling signal achieved in DLBCL patients with 80% ORR, and 60% CR (MRD-)
• 540M Cells + FluCy750 established as ongoing investigational dose based on Phase I therapeutic index
• 19B Stealth construct proof of concept achieved; enabling expansion and persistence by delaying host rejection through immune cloaking

Building On Strong Cell Therapy Foundation

• Optimization of manufacturing platform using ARCUS for CAR T insertion now clinically validated across two clinical candidates
• Precision CAR T platform has broad applicability beyond hematologic malignancies, including solid tumors and autoimmune diseases

Note: Azer-cel = Precision’s lead clinical candidate, Azercabtagene zapreleucel; NHL = Non-Hodgkin’s Lymphoma (NHL) & ALL= Acute Lymphoblastic Leukemia
1. N=11 patients evaluable for ≥ 6 months duration on response, 6 durable responders past 6 months or longer with 431 (> 1 year) median days on response; DoR measured from D0
Total Body of Evidence:
Azer-cel Has Meaningful Clinical Activity Across B Cell Malignancies

84 Patients Treated With Azer-cel

- 61 NHL Patients
 - 58% ORR
 - 41% CR

- 23 B-ALL Patients
 - All Doses / All LD Regimens
 - 61% ORR
 - 61% CR/CRi

★ Tailoring Azer-cel for the right patient, with right dose, right product attributes and right lymphodepletion

Note: Based on Patients Evaluable for Efficacy
Azer-cel is Active in CAR T Relapsed Patients:
Demonstrated High Response Rates and Durability

Across All Subjects
All Doses / All LD Regimens

61
NHL Patients

CAR T Relapse Pts2,3
DL3, DL4b / All LD Regimens

18
Patients

83% ORR
61% CR Rate
55% DoR ≥ 6-months1

*Median duration in ≥ 6-month responders is 431 days

★ Azer-cel has the potential to provide new standard of care for this high-risk population with unmet need

Note: Based on Patients Evaluable for Efficacy
1. N=11 patients evaluable for > 6 months duration on response, 6 durable responders past 6 months or longer with 431 (> 1 year) median days on response; DoR measured from D0
2. N = 2 CAR T Relapse Patients patients were also treated at sLD and observed a 50% ORR
3. CAR T relapse Includes 17 NHL and 1 ALL patient from ASH Cohort; only sLD patients receiving optimized product attributes included
Azer-cel Approach is Biologically Rational for CAR T Relapse Population

- Azer-cel from healthy donor may be more effective than an autologous product
- Autologous products made from cancer patients with impaired immune system may result in suboptimal product attributes

4. T cell quantity and function impaired by prior therapy precluding generation of high-quality Auto CAR T product
5. Prior Chemotherapy adversely impacts surviving T cells and reduces early-lineage T cells necessary for CAR T cell expansion
Majority of CAR T Relapse Patients Continue to Have CD19+ Disease

In our prospective data, patients continue to have antigen positive disease

Note: Retrospective Literature states that 12-28% of patients have antigen negative relapse (CD19-)
1. Precision Internal Clinical Data
2. Precision data; Spiegel US Consortium data
CAR T Relapse Setting Has No Approved Standard of Care and Poor Prognosis

<table>
<thead>
<tr>
<th>Overall Response Rate (ORR)</th>
<th>~20-30%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Progression Free Survival (mPFS)</td>
<td>~1.8 months</td>
</tr>
<tr>
<td>Overall Survival (mOS)</td>
<td>Drug tx: 4-6 months</td>
</tr>
<tr>
<td>Safety</td>
<td>Manageable safety profile in this fragile patient population</td>
</tr>
<tr>
<td>Potential Regulatory Path</td>
<td>No therapy currently indicated/approved</td>
</tr>
</tbody>
</table>

Proposed TPP For CAR T Relapse Patients

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>> 50%</td>
</tr>
<tr>
<td></td>
<td>> 3 months</td>
</tr>
<tr>
<td></td>
<td>> 6 months</td>
</tr>
<tr>
<td></td>
<td>★ No treatment related Grade 5 events</td>
</tr>
<tr>
<td></td>
<td>Single-arm study with historical control (e.g., U.S. Consortium Data)</td>
</tr>
</tbody>
</table>

Notes: TPP = Target Product Profile
1. Barriers to enrollment in clinical trials of patients with aggressive..., Bezzera, E. Mayo Clinic, 2021
 Note: Other therapies included targeted treatments such as venetoclax, brentuximab vedotin or ibrutinib, novel therapies, steroids, second CAR-T on clinical trial, and allogeneic stem cell transplant. In total, 8 patients proceeded to allogeneic stem cell transplant after axi-cel PD, 3 of whom remain in CR.
3. University of Washington study shows CAR T early relapsers only have mOS of 3.8 months; https://onlinelibrary.wiley.com/doi/10.1002/ajh.25505
CAR T Relapse Market is Large and Growing

60-65% of patients currently treated with Auto CAR T will relapse\(^1\)

* By 2025, Global CAR T Relapse Patient Pool Is Expected To Grow ~4x as Auto CAR T Drugs become the SoC in 2L+

→ Estimate total Global G8 markets to be ~18k patients per year\(^2\)

1. Estimated from ZUMA 1 and ZUMA 7 EFS rates
2. G8 includes US, Japan, Canada and EU5 assuming equal access to CAR T therapies; market research, CancerMPact
Azer-cel: Allogeneic CAR T
For CD19+ CAR T Relapsed Patients
One Year Ago, Precision Showed Compelling Data in the CAR T Relapse Setting

<table>
<thead>
<tr>
<th>Requirement</th>
<th>Outcome</th>
<th>n (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ORR ≥ Day 28</td>
<td>Resolution</td>
<td></td>
</tr>
<tr>
<td>CR ≥ Day 28</td>
<td>Resolution</td>
<td></td>
</tr>
<tr>
<td>≥ 6 mo. Duration of Response</td>
<td>Resolution</td>
<td></td>
</tr>
<tr>
<td>PFS > 2 months</td>
<td>Resolution</td>
<td></td>
</tr>
</tbody>
</table>

Despite compelling response and durability data, the safety profile needed to be ameliorated given treatment related events.

Note: ORR = Overall Response Rate, CR = Complete Remission, PFS = Progression Free Survival, LD = Lymphodepletion, DoR is calculated from Day 0.
Significant Progress Made to Improve Azer-cel Therapeutic Index

- Optimized manufacturing process using ARCUS leading to improved product attributes resulting in improved potency and control
- Received favorable CMC feedback from the FDA for ongoing development path
- Reduced lymphodepletion dose intensity with goal to improve safety
Two Levers Designed to Improve Therapeutic Index

1. Reduced LD Dose Intensity: Reducing the Fludarabine Dose in Lymphodepletion
 - Reduce total fludarabine exposure during lymphodepletion
 - Fludarabine dose of 30 mg/m² per day
 - 4 days
 - 3 days

2. Potency with Control: Improving Product Attributes
 - Process improvement led to improved fitness measured by non apoptotic cell fraction
 - In optimized manufacturing process, reduced CD4+/CD8+ ratio to minimize inflammatory toxicities
 - Total CD4+ CAR T effective cell dose is a key contributor of CD8+ CAR T cell peak expansion, inflammatory cytokines and inflammatory toxicities such as ICANS
Optimizing Lymphodepletion Regimen to Drive CAR T Expansion:
An Important Factor to Drive Molecular Remission (MRD-)

Note: 2 patients treated with azer-cel 500M cells with sLD achieved lower peak and 50% ORR/CR

1. DL4b/sLD showed 0.8k CAR T cells

Transitioned To FluCy750

FluCy750 vs. sLD:
- Increased homeostatic cytokines to drive expansion: 58x Peak and 51x AUC
- Similar inflammatory cytokine profile to maintain safety

Outcome: Increased Expansion

Reduced to sLD to Improve Safety
Outcome: Modest Expansion

Durable responders for Yescarta - ZUMA 1 had CAR T levels in range 21k to 92k CAR T Cells per mL

Mean CAR T Peak

Days

44K CART T cells
(DL4b/FluCy750)

~1K CART T cells
(DL4b/sLD)

Note: 2 patients treated with azer-cel 500M cells with sLD achieved lower peak and 50% ORR/CR
1. DL4b/sLD showed 0.8k CAR T cells
First-In-Class Opportunity

Azer-cel Safety Update
CD19+ CAR T Relapsed Patients
Optimized Product Attributes and Reduced Fludarabine Exposure Significantly Improves Safety Profile

<table>
<thead>
<tr>
<th>Number (%) of subjects experiencing events with max grade</th>
<th>DL3a/eLD Cohort (n=6)</th>
<th>DL4b/mLD Cohort (n=6)</th>
<th>Latest Cohort (DL4b FluCy750 or sLD) (n=7)</th>
<th>Latest Cohort (DL4b FluCy750) (n=5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>AE of special interest(^1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CRS</td>
<td>Grade 1 or Grade 2</td>
<td>5 (83%)</td>
<td>4 (67%)</td>
<td>4 (57%)</td>
</tr>
<tr>
<td></td>
<td>Grade 3 or higher</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>ICANS</td>
<td>Grade 1 or Grade 2</td>
<td>2 (33%)</td>
<td>1 (17%)</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Grade 3 or higher(^2)</td>
<td>1 (17%)</td>
<td>2 (33%)</td>
<td>0</td>
</tr>
<tr>
<td>GvHD</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Other notable AEs</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Infection</td>
<td>Grade 1 or Grade 2</td>
<td>0</td>
<td>1 (17%)</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Grade 3 or higher</td>
<td>4 (67%)</td>
<td>2 (33%)</td>
<td>0</td>
</tr>
<tr>
<td>Grade 5 events(^3)</td>
<td>2 (33%)(^3)</td>
<td>3 (50%)(^4)</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Note: In Latest cohort, 500M cells is DL4b
1. AESI/Adverse Events of Special Interest
2. Median duration of Grade 3 ICANS was 4 days (2-24days)
3. Two deaths in the DL3a/ eLD Cohort were infections and suspected fludarabine associated neurotoxicity
4. Three deaths in DL4b/ mLD Cohort were suspected fludarabine associated neurotoxicity
In Latest Cohort, n = 5, Azer-cel CAR T Specific AE Profile is Comparable to Approved Autologous CAR T

<table>
<thead>
<tr>
<th>Number (%) of subjects experiencing events with max grade</th>
<th>Autologous CAR T</th>
<th>Allogeneic CAR T</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Yescarta¹ (r/r LBCL)</td>
<td>Kymriah² (r/r DLBCL)</td>
</tr>
<tr>
<td>AE of special interest</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CRS</td>
<td>Grade 1 or Grade 2</td>
<td>Grade 3 or higher</td>
</tr>
<tr>
<td></td>
<td>84%</td>
<td>9%</td>
</tr>
<tr>
<td></td>
<td>51%</td>
<td>23%</td>
</tr>
<tr>
<td></td>
<td>43%</td>
<td>3%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Neurologic toxicities (including ICANS)</td>
<td>Grade 1 or Grade 2</td>
<td>Grade 3 or higher</td>
</tr>
<tr>
<td></td>
<td>56%</td>
<td>31%</td>
</tr>
<tr>
<td></td>
<td>41%</td>
<td>19%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10%</td>
</tr>
</tbody>
</table>

Note: In Latest cohort, 500M cells is DL4b
1. https://www.yescartatecartusrems.com/
4. Allogene 2023 10K

FOR ILLUSTRATIVE PURPOSES ONLY: no head-to-head clinical trial has been conducted evaluating Azer-cel or other products. Differences exist between trial designs and subject characteristics, and caution should be exercised when comparing data across studies.
Azer-cel Efficacy Update

Durability and Molecular Response

Update from ASCO ’22, n = 11 patients
Update Since ASCO 2022 Data: Durability Favorable vs. Current Treatment
Current Treatment Defined in U.S. Consortium Data/RWD

1. Subject J was non-evaluable for efficacy at Day 28 assessment due to death from suspected fludarabine (Flu)-associated neurotoxicity on Day 23.
2. DL3a dose – 3 x 10⁶ CAR T cells/kg; DL4b dose – 500 x 10⁶ CAR T cells/flat dose.
3. Subject K relapsed after Allo CAR T. Original response: K – CR for 150 days before PD. Subject L relapsed after Allo CAR T. Original response: L – PR for 14 days before PD.

Current SoC mPFS ~1-2 months

• 100% ORR, 82% CR in 11 evaluable subjects
• 6/11 (55%) evaluable subjects in response at ≥ D180
• 4/11 (36%) evaluable subjects in response at ≥ D360
• 4/7 (57%) patients ≥ D360 (excluding early mortality)

Data Update

*Data cutoff 01May2023
Molecular Remission (MRD-) Key Predictor of Durability

1. MRD was evaluated via NGS-MRD assay to assess for ctDNA in plasma. Any detectable ctDNA was considered MRD-positive.

- Early Clearance of Circulating Tumor DNA (MRD-) measured by ClonoSEQ is Predictive for Relapse Free Interval After CAR T Treatment (per ZUMA-1)

- PFS is Strongly Correlated with MRD Negative Status

- Molecular Remission (MRD-) is Predictive of Durable Response

1. MRD was evaluated via NGS-MRD assay to assess for ctDNA in plasma. Any detectable ctDNA was considered MRD-positive.

cDNA - circulating tumor DNA; MRD – measurable (minimal) residual disease; NGS – next-generation sequencing; PET-CT – positron emission tomography-computed tomography; PFS – progression-free survival

Update Since ASCO 2022: MRD Negativity Correlated With Durability

2. Subject J was non-evaluable for efficacy at Day 28 assessment due to death from suspected fludarabine (Flu)-associated neurotoxicity on Day 23.
3. DL3a dose – 3 x 10^6 CAR T cells/kg; DL4b dose – 500 x 10^6 CAR T cells/flattened dose.
4. Subject K relapsed after Allo CAR T. Original response: K – CR for 150 days before PD. Subject L relapsed after Allo CAR T. Original response: L – PR for 14 days before PD.

Note: DoR calculated as response from Day 0 onwards.

- 7/8 (88%) ct-DNA evaluable patients MRD-
- 6/11 (55%) evaluable subjects in response at ≥ D180
- 4/11 (36%) evaluable subjects in response at ≥ D360
- 4/7 (57%) patients ≥ D360 (excluding early mortality)

Data Update 01 May 2023
Latest Azer-cel Cohort

Additional Safety and Efficacy Data Supports Potential Phase 2 Recommended Dose

500M CAR T Cells (DL4b) + FluCy750

FluCy750 = 30 mg/m² Flu × 3 days + 750 mg/m² Cy × 3 days
Azer-cel + FluCy750 Preliminary Evidence of Efficacy:
Overall Response Rate with Molecular Remissions in CAR T Relapse Setting

1. DL4b dose – 500 x 10⁶ CAR T cells/flat dose (500M Cells). FluCy750= 30 mg/m² Flu × 3 days + 750 mg/m² Cy × 3 days.

2. MRD determination using clonoSEQ®MRD Detection Assay (Adaptive Biotechnologies) at D28. Neg = negative, Pos = positive

3. N = 2 CAR T Relapse Patients were also treated at sLD and observed a 50% ORR

<table>
<thead>
<tr>
<th>Patient ID</th>
<th>Cell Dose</th>
<th>LD Type</th>
<th>MRD Status</th>
<th>D28 Response</th>
<th>Durability</th>
</tr>
</thead>
<tbody>
<tr>
<td>O</td>
<td>500M</td>
<td>FluCy750</td>
<td>Neg</td>
<td>CR</td>
<td>PD (D90) Antigen Escape</td>
</tr>
<tr>
<td>P</td>
<td>500M</td>
<td>FluCy750</td>
<td>Neg</td>
<td>PR</td>
<td>D90+</td>
</tr>
<tr>
<td>Q</td>
<td>500M</td>
<td>FluCy750</td>
<td>Pending</td>
<td>PR</td>
<td>D28+</td>
</tr>
<tr>
<td>R</td>
<td>500M</td>
<td>FluCy750</td>
<td>Pos</td>
<td>SD</td>
<td>D28+</td>
</tr>
<tr>
<td>S</td>
<td>500M</td>
<td>FluCy750</td>
<td>n/a</td>
<td>PD</td>
<td>n/a</td>
</tr>
</tbody>
</table>

Latest cohort maintained efficacy with an ameliorated safety profile

60% ORR
66% MRD-
(of evaluable n= 3)

1. DL4b dose – 500 x 10⁶ CAR T cells/flat dose (500M Cells). FluCy750= 30 mg/m² Flu × 3 days + 750 mg/m² Cy × 3 days.
2. MRD determination using clonoSEQ®MRD Detection Assay (Adaptive Biotechnologies) at D28. Neg = negative, Pos = positive
3. N = 2 CAR T Relapse Patients were also treated at sLD and observed a 50% ORR
Established Endpoints of Key Significance for Single Arm Hematologic Oncology Trials

<table>
<thead>
<tr>
<th>Potential Endpoints for FDA approval</th>
<th>Proposed Endpoints For CAR T Relapse Patients</th>
<th>Azer-cel (500M cells + FluCy750) Interim Product Profile</th>
</tr>
</thead>
<tbody>
<tr>
<td>1º Overall Response Rate (ORR)</td>
<td>> 50%</td>
<td>✔️</td>
</tr>
<tr>
<td>2º Duration of Response (DoR)</td>
<td>> 50% @ 3 months</td>
<td>Not yet fully evaluable 66% MRD-</td>
</tr>
<tr>
<td>2º Safety Profile</td>
<td>★ No Treatment Related Grade 5 Events</td>
<td>✔️</td>
</tr>
<tr>
<td>Potential Regulatory Path</td>
<td>Single-arm study with historical control (e.g., U.S. Consortium Data)</td>
<td>Next step to be discussed with FDA</td>
</tr>
</tbody>
</table>

Notes: 1º = Primary endpoint, 2º = secondary endpoint
Azer-cel Potential First-In-Class Allogeneic Therapy for CAR T Relapsed Patients

In latest cohort, Azer-cel safety profile ameliorated with 0% > Grade 3 Allogeneic CAR T related AEs in fragile CAR T relapse patient population

Azer-cel highly active across CAR T relapsed patients (N=18), demonstrating 83% ORR, 61% CR rates with 55% DoR ≥ 6 months

- Efficacy maintained at potential Phase 2 dose, 500M Cells + FluCy750 with 60% ORR and 66% MRD-
- Favorable CMC feedback from FDA on chemistry, manufacturing, and controls strategies support ongoing late-stage development for Azer-cel
- Clinical trial material ready from optimized manufacturing process
- Upcoming FDA clinical meeting to guide potential Phase 2 study; focus on trial design, size and endpoints

Note: DoR measured as response from Day 0
1. N=11 patients evaluable for 6-month DoR, 6 durable responders past Month 6 with 431 (> 1 year) median days on response
PBCAR19B Stealth Cell: Anti-CD19 Allogeneic CAR T

Cloaked Design to Evade Immune Rejection and Potentially Displace 2nd Line Auto CAR T in CD19+ CAR T Naïve Patients
PBCAR19B Stealth Cell: Anti-CD19 Allogeneic CAR T Cloaked to Evade Immune Rejection

Key Feature

1. **Anti-CD19 CAR**
 - TCR is knocked-out to prevent GvHD

2. **Anti-beta-2 microglobulin (β2m) shRNA**
 - Reduces MHC I expression to prevent rejection by T cells

3. **HLA-E transgene**
 - Prevents rejection by NK cells

Tx Goal/ Patient Population

Displace 2nd Line Auto CAR T in CD19+ CAR T Naïve Patients

PBCAR19B Stealth Cell

Cloaked To Overcome Rejection by T Cells and NK Cells
Delayed Immune Response By T Cells and NK Cells Demonstrates Proof of Principle For Stealth Construct in DLBCL

This strategy may further enhance efficacy profile to displace autologous CAR T in early line DLBCL

Note: Azer-cel DL4b dose – 500 x 10^6 cells/flat dose per subject; 19B DL2 dose – 540 x 10^6 cells/flat dose per subject.
Allogeneic CAR T Related AE Profile in PBCAR19B Stealth Cell Treated Subjects

<table>
<thead>
<tr>
<th>AE of special interest</th>
<th>CRS</th>
<th>ICANS</th>
<th>GvHD</th>
<th>Infection</th>
<th>Grade 5 events</th>
</tr>
</thead>
<tbody>
<tr>
<td>540M Cells + sLD Cohort (n=3)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grade 1 or Grade 2</td>
<td>1 (33%)</td>
<td>1 (33%)</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Grade 3 or higher</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>540M Cells + FluCy750 Cohort (n=4)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grade 1 or Grade 2</td>
<td>1 (25%)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Grade 3 or higher</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Notes: FluCy750 = 30 mg/m² Flu × 3 days + 750 mg/m² Cy × 3 days, Standard LD (sLD) = 30 mg/m² Flu × 3 days + 500 mg/m² Cy × 3 days; 540M Cells = DL2

Data cutoff 01May2023
PBCAR19B Stealth Cell Dosed at 540M Cells Achieved 71% ORR with No Grade ≥3 Allogeneic CAR T Related Adverse Events

Note: In DL1, 270M Cells, 1 PR out of 3 subjects treated

1. DL2 dose – 540 x 10⁶ CAR T cells/flat dose, sLD = 30 mg/m² Flu × 3 days + 500 mg/m² Cy × 3 days, FluCy750 = 30 mg/m² Flu × 3 days + 750 mg/m² Cy × 3 days

2. MRD determination using clonoSEQ®MRD Detection Assay (Adaptive Biotechnologies) at D28

<table>
<thead>
<tr>
<th>Patient ID</th>
<th>Disease</th>
<th>LD Type¹</th>
<th>MRD Status²</th>
<th>D28 Response</th>
<th>Durability</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>DLBCL</td>
<td>sLD</td>
<td>Pos</td>
<td>PR</td>
<td>PD (D60)</td>
</tr>
<tr>
<td>2</td>
<td>DLBCL</td>
<td>sLD</td>
<td>Neg</td>
<td>CR</td>
<td>D150+</td>
</tr>
<tr>
<td>3</td>
<td>DLBCL</td>
<td>sLD</td>
<td>Pos</td>
<td>PD</td>
<td>n/a</td>
</tr>
<tr>
<td>4</td>
<td>DLBCL</td>
<td>FluCy750</td>
<td>Neg</td>
<td>CR</td>
<td>D60+</td>
</tr>
<tr>
<td>5</td>
<td>DLBCL</td>
<td>FluCy750</td>
<td>Neg</td>
<td>CR</td>
<td>D28+</td>
</tr>
<tr>
<td>6</td>
<td>MCL</td>
<td>FluCy750</td>
<td>n/a</td>
<td>PR</td>
<td>D28+</td>
</tr>
<tr>
<td>7</td>
<td>MCL</td>
<td>FluCy750</td>
<td>Pos</td>
<td>PD</td>
<td>n/a</td>
</tr>
</tbody>
</table>

★ Most Compelling Signal: In DLBCL patients, 80% ORR with 60% CR (MRD-)

Data cutoff 01May2023
PBCAR19B Stealth Cell Potential Best-In-Class Allogeneic Therapy For CAR T Naïve Patients

Stealth Cell Proof of Concept Achieved: Through immune cloaking, preliminary efficacy in DLBCL patients enabling expansion and persistence by delayed immune rejection

Total Experience at 540M Cells:

- Treatment with PBCAR19B 540M Cells showed encouraging safety profile with no ≥ Grade 3 Allogeneic CAR T related AEs
- PBCAR19B showed high ORR (71%) and CR rate (43%) in subjects with evidence of molecular remission (MRD-) and preliminary durability

Compelling Signal of Interest:

- Compelling signal in DLBCL patients, 80% ORR with 60% CR (MRD-); Long-term durability to be confirmed once evaluable
- 540M Cells + FluCy750 established dose for continued investigation in DLBCL patients

★ Results achieved with new optimized manufacturing process further validate Precision’s Cell Therapy Platform
Building On Strong Foundation

Going Beyond Our Leading Clinical CAR T Assets
Next Generation Research Toolkit
Precision has built an engine for rapid discovery and early-development of donor-derived allogeneic cancer cell therapies

- Process development and CMC team continually iterate on improvements to the platform and next generation products
- Research rapidly designs and tests new constructs in the donor-derived allogeneic cell therapy platform
- Rapid pathway to IND due to platform synergies and regulator familiarity as well as close cross-functional team interactions
- Experienced clinical operations team and infrastructure; currently in the clinic for later stage development

Proven cell therapy research, process development, manufacturing, quality, and clinical teams
Solid Tumor & Autoimmune Opportunities For Precision’s CAR T Platform

Precision Scientists Overcoming Challenges For Adoptive Cell Tx In Solid Tumors

1. Tumor heterogeneity & antigen escape

2. T-cell trafficking and infiltration

3. Immunosuppressive tumor microenvironment

Potential to Advance Into Autoimmune Disorders
Precision BioSciences’ Leading CAR T Platform

★ Precision has validated its proprietary cell therapy platform using ARCUS

› Azer-cel is active with acceptable safety profile in CAR T relapse setting; Next step for Azer-cel is clinical meeting with FDA

› PBCAR19B Stealth Cell construct demonstrated acceptable safety profile and preliminary efficacy in Phase 1; compelling signal in DLBCL ready for validation in next stage of development; seeking partnership opportunity

› Precision’s platform wide manufacturing optimizations and high CAR T insertion efficiency with ARCUS are the foundation for improved product potency and control

› Precision’s state of the art cell therapy capabilities support potential collaborations in hematological malignancies, solid tumors and autoimmune disorders
End of Presentation- THANK YOU
Question and Answer Session...